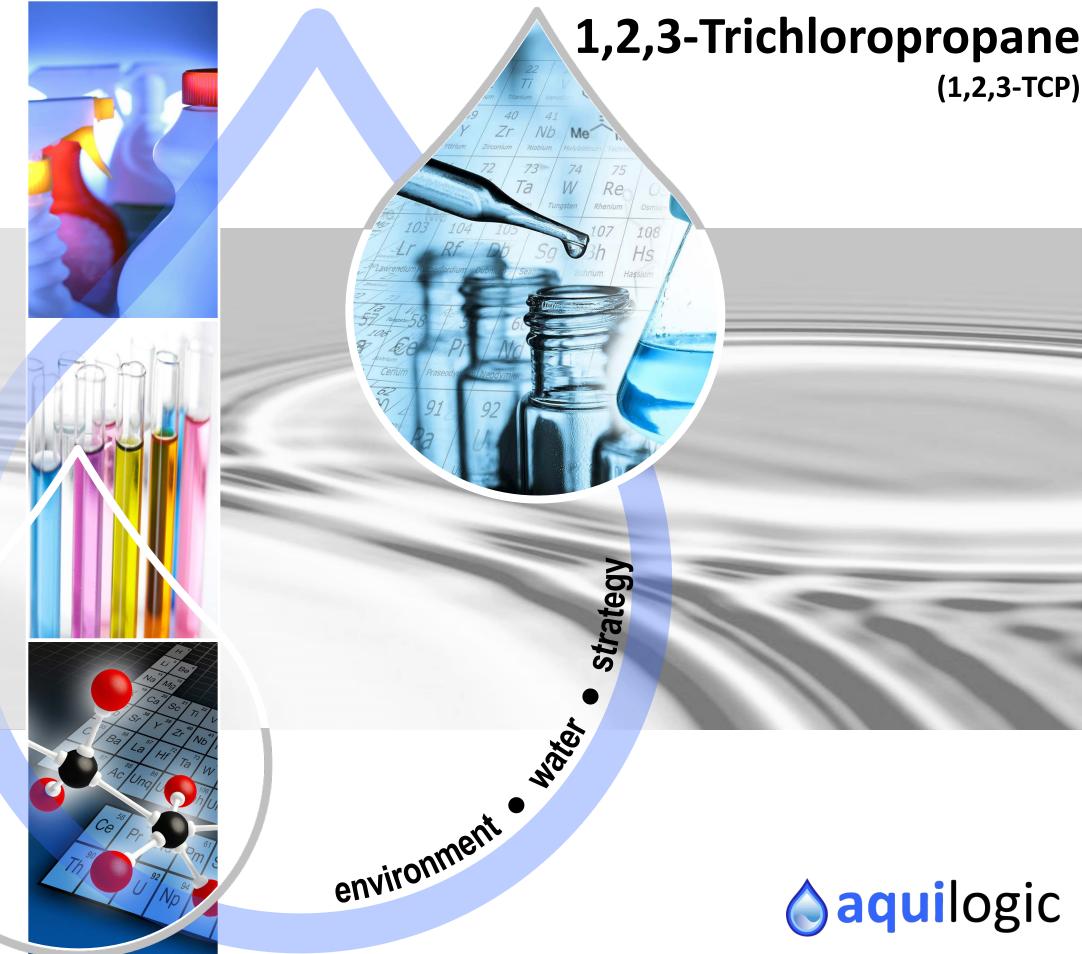


Email: info@aquilogic.com Telephone: +1.714.770.8040

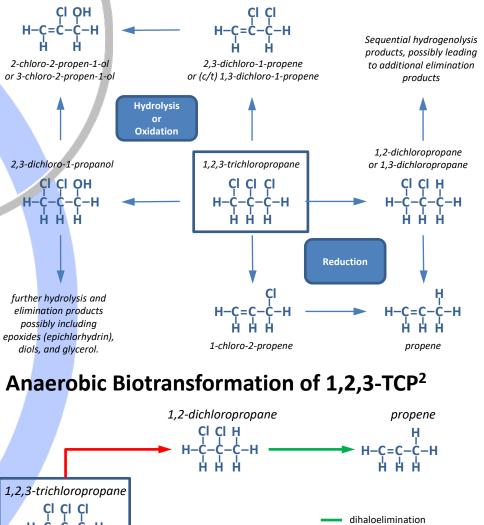

The 1,2,3-TCP Experts

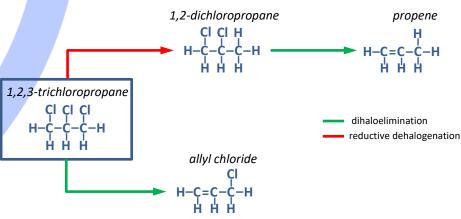
Responsible Party Identification GIS and Geomatics Contaminant Hydrogeology Fate and Transport Modeling **Risk Assessment Remediation Feasibility Studies** Soil and Groundwater Remediation Natural Resource Damage Assessment Water Resources Assessment Source Water Assessment and Protection **Drinking Water Treatment Environmental Risk Management** Litigation Support/Expert Witness Forensic Engineering Stakeholder/Public Participation **Regulatory Strategy**

To contact us, or sign up for our newsletter, please scan here.

www.aquilogic.com

(1,2,3-TCP)





What is 1,2,3-TCP?

1,2,3-trichloropropane (1,2,3-TCP) was used historically as a paint and varnish remover, a cleaning and degreasing agent, a cleaning and manufacturing solvent, and was a common component of soil fumigants previously used widely in agriculture. 1,2,3-TCP is characteristically mobile in the subsurface and resistant to natural attenuation, and its persistence has resulted in impacts to more than 500 water sources in California alone. Currently, there is no federal maximum contaminant level (MCL) for 1,2,3-TCP. In the absence of a federal standard, California adopted its own drinking water MCL for 1,2,3-TCP of 5 parts per trillion (ppt) on December 14, 2017.

Common Reactions for In-Situ Remediation¹

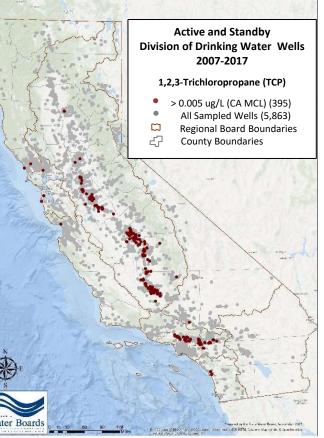
1,2,3-TCP Property Comparison^{3,4}

Compound	Molecular Weight	Density	Solubility	K _h	log K _{ow}	log K _{oc}	PHG⁵	MCL (CA)⁵
	g/mol	g/cm ³ at 20-25°C	mg/L at 20-25°C	unitless	unitless	unitless	ug/L	ug/L
1,2,3-TCP	147.43	1.38	1,900	0.016	2.50	2.59	0.0007	0.005
TCE	131.39	1.46	1,100	0.43	2.47	1.97	1.7	5
DBCP	236.33	2.08	1,000	0.0083	2.68	2.23	0.0017	0.2

Affected California Drinking Water Sources and Systems⁶

County	Number of Affected Sources	>0.005 - 0.050 (ug/L)	>0.050 - 0.50 (ug/L)	>0.50 (ug/L)	Number of Affected Public Water Systems
Butte	1	1	0	0	1
Fresno	69	54	13	2	10
Kern	151	76	71	4	20
Los Angeles 155		95	19	41	15
Madera	1	1	0	0	1
Merced	26	7	12	7	11
Monterey	1	1	0	0	1
Riverside	22	20	2	0	4
Sacramento	2	1	1	0	2
San Bernardino	24	18	3	3	6
San Diego	13	7	4	2	1
San Joaquin	19	12	7	0	4
San Mateo	11	9	2	0	3
Santa Cruz	1	1	0	0	1
Stanislaus	17	9	8	0	5
Tulare	49	37	10	2	9
Total	562	349	152	61	94

Sources:


- 1. Tratnyek, P.G. (2008). Fate and Remediation of 1,2,3-Trichloropropane. Mav.
- 2. Samin and Janssen. (2011). Transformation and biodegradation of 1,2,3trichloropopane (TCP).
- 3. USGS. (2006). Description, Properties, and Degradation of Selected Volatile Notes: Organic Compounds Detected in Groundwater – A Review of Selected Literature. Open-File Report 2006-1338.
- 4. ATSDR. (2014). Retrieved from:
- http://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=883&tid=173

5.

- 6.

+1.714.770.8040Email: info@aquilogic.com Felephone:

Active and standby public drinking water wells that had at least one detection of TCP above the MCL, 2007-2017, 395 wells. (Source: Public supply well data in GeoTracker-GAMA.

SWRCB. (2017). MCLs, DLRs, and PHGs for Regulated Drinking Water Contaminants. September 29. SWRCB. (2017). 1,2,3-Trichloropropane. Retrieved from: https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/123 TCP.shtml. December 27.

K_h = Henry's Law Constant K_{ow} = Octanol-Water Partition Coefficient K_{oc} = Organic Carbon Partition Coefficient